NASA TECHNICAL NOTE NASA TN D-6272 H LIBRARY KAFB, NM LOAN COPY: RETURN T AFWL (DOGL) KIRTLAND AFB, N. M. # COMPILATION OF XENON FLASH TUBE DATA FOR PILOT WARNING INDICATOR SYSTEMS by Robert Gagnon and Anthony R. Lewis Electronics Research Center Cambridge, Mass. 02139 NATIONAL AERONAUTICS AND SPACE ADMINISTRATION . WASHINGTON, D. C. . MARCH 1971 | | | | | 07330 | | | | | | |--|--|---|---|---|--|--|--|--|--| | 1. Report No.
NASA TN D-6272 | 2. Government Acc | cession No. | 3. Recipient's Catalo | og No. | | | | | | | 4. Title and Subtitle Compilation of Xer | on Flash T | | 5. Report Date
March 1971 | | | | | | | | for Pilot Warning | | 1 4 | 6. Performing Organization Code | | | | | | | | 7. Author(s)
Robert Gagnon and | Anthony R. | | 3. Performing Organi | zation Report No. | | | | | | | 9. Performing Organization Name and | Address | 10 | D. Work Unit No. | 01 05 | | | | | | | Electronics Resear | 1 | 125-22-07-
1. Contract or Grant | | | | | | | | | Cambridge, Massach | usetts | 1: | 13. Type of Report and Period Cov | | | | | | | | 12. Sponsoring Agency Name and Addr | ess | | m1 2 1 | 37 - 1 - | | | | | | | National Aeronauti | | [1 | Technical | | | | | | | | Space Administrati
Washington, D. C. 209 | | | 14. Sponsoring Agency Code | | | | | | | | 15. Supplementary Notes | | | | | | | | | | | as aircraft beacor (2 units) which was lamp output was me 580-23A), factory-Four filters (cent and 0.974 µm) were characteristics. were: pulse shape steradiancy, peak peak optical power output, and conver | as not desing as not desing as a second with the contract of t | gned for the day and a radiomed against | nat purpose
eter (EG&G
secondary
5, 0.876, (
detailed s
d for each
rise time
lant intens | e. Flash Model standard 0.927, spectral lamp , lamp sity, | | | | | | | 17. Key Words
Xenon Flash Tube
PWI Systems | | 18. Distribution State | ement | | | | | | | | | | Unclas | sified - Unl | imited | | | | | | | 19. Security Classif, (of this report) | 20. Security Clas | | sified - Unl | imited | | | | | | | 19. Security Classif. (of this report) Unclassified | | | | | | | | | | ^{*}For sale by the National Technical Information Service, Springfield, Virginia 22151 ## COMPILATION OF XENON FLASH TUBE DATA FOR PILOT WARNING INDICATOR SYSTEMS by Robert Gagnon and Anthony R. Lewis #### SUMMARY To provide design data for Pilot Warning Indicator (PWI) systems, we measured the characteristics of six types of xenon strobe lamps (14 units) built to operate as aircraft beacons and one type of xenon strobe lamp (2 units) which was not designed for that purpose. Flash lamp output was measured with a radiometer (EG&G model 580-23A), factory-calibrated against a secondary standard. Four filters (central wavelengths 0.825, 0.876, 0.927, and $0.974~\mu m$) were used to obtain more detailed spectral characteristics. Properties determined for each lamp were: pulse shape, pulse width, pulse rise time, lamp steradiancy, peak irradiance, peak radiant intensity, peak optical power, average optical power, optical energy output, and conversion efficiency. #### INTRODUCTION A Pilot Warning Indicator (PWI) system, using xenon flash tubes as radiation sources, is presently being developed by NASA. To facilitate the design of detectors for the system, we have measured the characteristics of commercially available xenon flash tubes, primarily those currently in use as aircraft beacons. Of particular interest was the measurement of radiated power to set acceptance thresholds and the determination of pulse-width and pulse rise-time for pulse-discrimination circuits which improve the signal-to-noise ratio. The information presented here is for specific flash tubes; manufacturers may change specifications from time to time and variation in production runs is to be expected. Our data are intended as an aid to designers and should, in no way, be regarded as rating one tube against another. #### EXPERIMENTS A diagram of the experimental setup is shown in Figure 1. The optical bench ensured the stability and constant separation distance of the radiometer and xenon lamp system. The radiometer (EG&G model 580-23A, S/N385) was factory-calibrated against a secondary standard, Figure 2. The oscilloscope (Tektronix 502A, Figure 1.- Experimental Set Up Dual-beam S/N 025935) was calibrated at NASA, ERC, just prior to the tests. Pulses were recorded with an oscilloscope camera for analysis. Filters could be inserted in the receptor cone of the radiometer to observe the output in a specific passband. Four filters were used with central wavelengths of 0.825, 0.876, 0.927, and 0.974 $\mu m;$ the filter transmission characteristics are shown in Figure 3. Figure 3.- Optical Filter Transmission Characteristics (Filters from Optical Technology, Inc.) #### Measurement Pulse form.— The pulse shapes of the total unfiltered radiated power are shown in Figures 4 through 10. The computed rise-times and pulse widths are given in Table I. Rise-time is taken as the time interval between the 10 percent and 90 percent amplitude points on the leading edge of the pulse. The pulse width, τ , is defined as: $$\tau = \frac{\left| \int_{\tau_0}^{\tau_1} V(t) dt \right|^2}{\int_{\tau_0}^{\tau_1} |V(t)|^2 dt}$$ (1) where V(t) is the voltage developed across the sampling resistor at the radiometer output and τ_1 - τ_0 is the total width of the pulse given by the baseline. Figure 4.- Output Pulse Form Figure 5.- Output Pulse Form Figure 7.- Output Pulse Form Figure 8.- Output Pulse Form Figure 9.- Output Pulse Form Table I.- Pulse Form Characteristics of Some Xenon Flash Tubes | Manufacturer | Model | Serial
Number | Telec
(Joules) | Rise Time
(µsec) | Pulse Width
(µsec) | Notes | |-------------------------|--|-------------------------------|------------------------------|----------------------------|--------------------------|--------------------------------| | Delta | Skystrobe | L-02228
L-03264
L-03265 | 17.8
18.4
18.4 | 44
43
52 | 261
314
325 | 160µF Capa-
citor | | Electro
Power
Pac | 373 | 15761
15761
15762 | 5.47
17.3
5.47 | 40
40
40 | 816
816
816 | with GE
FT-91
Flash Tube | | Grimes Co. | Series 550 | 260
317 | 20.7
20.7 | 22
31 | 188
216 | | | Honeywell | Wingtip
AG113C
Light
Assembly | 7792 | 14.1 | 360 | 2094 | | | In-Flight
Devices | IVI Master
Unit | 16JE 6-3 | 10.95
10.95 | 21
45 | 232
213 | | | Whelan | 2500 | 25-1496-1
25-1496-2 | 28
28 | 26
25 | 222
202 | | | Winn
Avionics | Omnistrobe | 2-2
2-3
2-4
2-5 | 10.6
10.6
10.6
10.6 | 54
39.5
47.5
37.5 | 245
260
265
251 | | - 1. All units designed for aircraft except Electro-Power Pac. - 2. Rise time taken between 10 percent and 90 percent amplitude points on leading edge of pulse - 3. Pulse width defined in text Eq. (1). The value of pulse-width, as defined in Eq. (1), is relatively insensitive to transient fluctuations near the peak whereas a definition of pulse width based upon the width at some fraction, say one-half of peak width is highly sensitive to just what value is selected for the maximum. Also, the pulse width as defined in Eq. (1) is approximately equal (for fast rise-times) to twice the RC time-constant of the lamp system. The integrals were evaluated graphically using a compensating polar planimeter. With the observed xenon lamp pulse shapes this pulse-width generally corresponds to about the 20 percent amplitude level. The following spectral characteristics were computed from the experimental data: peak irradiance, radiant intensity, peak optical lamp power, average optical lamp power, optical energy output, and conversion efficiency. These values are summarized in Table II. Peak irradiance. The peak energy flux at the detector, in the passband of the filter. $$E_{\Delta\lambda} = \frac{V_{P}}{R_{L} S_{\Delta\lambda}}$$ (2) where: $E_{\Delta\lambda}$ is the peak irradiance at the detector, watts/cm² $V_{\rm p}$ is the pulse maximum (from oscilloscope), volts $R_{\rm L}$ is the load resistor at the radiometer output, ohms $S_{\Delta\lambda}$ is the average detector sensitivity in the passband, amps/watt/cm² (fig. 2). Peak Radiant Intensity. The peak power output of the lamp radiated into a unit solid angle in the filter passband. $$I_{\Delta\lambda} = \frac{E_{\Delta\lambda} d^2}{T_{\text{eff}\Delta\lambda}}$$ (3) $$T_{\text{eff}\Delta\lambda} = \frac{\int_{\lambda_{1}}^{\lambda_{2}} T(\lambda)P(\lambda)d\lambda}{\int_{\lambda_{1}}^{\lambda_{2}} P(\lambda)d\lambda}$$ (4) where $T(\lambda)$ is the filter transmission as a function of wavelength, Figure 3 $P(\lambda)$ is the xenon lamp optical output power spectrum, Figure 11 λ_1 , λ_2 are the 3 percent points of the product curve $T(\lambda)P(\lambda)$, Figure 11 The unfiltered radiated output power spectrum was measured for a typical lamp (GE FT-91 flash tube used with the Electro-Power Pac system); it was measured against a calibrated lamp through a Jarrell-Ash monochromator system. The lamp was operated at current densities comparable with those of aircraft strobe lights; intensities were taken at 10Å (l μm) intervals. The values obtained for each wavelength interval was then multiplied by the filter transmission characteristic and the integrals in Eq. (4) evaluated graphically in the manner previously described. Peak Optical Lamp Power. The peak power output at the lamp in the filter passband. $$P_{\Delta\lambda} = T_{\Delta\lambda} \Omega_{L}$$ (5) where ${\rm P}_{\Delta\lambda}$ is the peak optical lamp power, watts ${\rm \Omega}_{\rm L}$ is the solid angle into which the lamp radiates, steradians The steradiancy of the lamps were calculated geometrically from the restricting mechanical apertures. All measurements and calculations were made for the radiometer and lamp in the same horizontal plane, with their axes oriented on the line connecting the center of the lamp with the center of the radiometer's detecting surface. No effort was made to locate a maximum energy point by rotating or tilting the xenon lamp. Optical Energy Output. The total energy radiated by the lamp in the filter passband is given by: $$J_{op\Delta\lambda} = P_{\Delta\lambda} \int_{1 \text{ cycle}} U(t) dt$$ (6) Figure 11.- Xenon Lamp Spectrum-Unfiltered and Transmitted Through Filters (Central Wavelengths 0.825, 0.876, 0.927 and 0.974 µMeters) where $J_{\text{op}\Delta\lambda}$ is the optical energy output, joules U(t) is the observed pulse form normalized to unify at the peak Average Optical Power. - Average optical power is shown as: $$P_{ave\Delta\lambda} = \frac{J_{op\Delta\lambda}}{\tau}$$ (7) Conversion Efficiency. The efficiency with which the lamp system converts the stored electrical energy into radiated energy in the filter passband $$\varepsilon_{\Delta\lambda} = 100 \frac{J_{\text{op}\Delta\lambda}}{J_{\text{elec}}}$$ (8) where $\epsilon_{\Delta\lambda}$ is the conversion efficiency, percent (%) $\rm J_{elec}$ is the stored energy, joules The stored electrical energy is given by $$J_{\text{elec}} = \frac{1}{2} CV^2$$ (9) where C is the capacitance connected directly across the lamp, farads V is the voltage across the capacitor terminals just prior to discharge, volts TABLE II. SPECTRAL CHARACTERISTICS OF SOME XENON FLASH TUBES (Continued) | | | Serial | | Peak Optical Power (watts) $^{ m P}_{\Delta\lambda}$ | | | | Average Optical Power
(watts)
^P aveΔλ | | | | Optical Energy
(Joules)
^J ορΔλ | | | | Conversion Efficiency (%) $^{arepsilon} \lambda$ | | | | |----------------------|--------------------------------------|---|---|--|-----------------------------------|------------------------------------|------------------------------------|--|-----------------------------------|-----------------------------------|-----------------------------------|---|---------------------------------------|---------------------------------------|---------------------------------------|--|-----------------------------------|------------------------------------|------------------------------------| | Manufacturer | Model | Number | Notes | 0.825 | 0.876 | 0.927 | 0.974 | 0.825 | 0.876 | 0.927 | 0.974 | 0.825 | 0.876 | 0.927 | 0.974 | 0.825 | 0.876 | 0.927 | 0.974 | | Delta | Skystrobe | L-02228
L-02228
L-03264
L-03265 | 1 2 | 1015
921
870
790 | 1208
1203
1201
1112 | 1985
1843
1680
1515 | 2193
1898
1700
1594 | 664
602
564
524 | 770
786
778
738 | 1297
1205
1089
1006 | 1433
1241
1102
1058 | 0.17
0.16
0.18
0.17 | 0.21
0.21
0.24
0.24 | 0.34
0.31
0.34
0.33 | 0.37
0.32
0.35
0.34 | 0.96
0.90
0.96
0.93 | 1.2
1.2
1.33
1.3 | 1.9
1.8
1.86
1.78 | 2.1
1.8
1.88
1.89 | | Electro
Power Pac | 373 | 15761
15761
15762
15762
15762 | 3,4,7
3,5,7
3,4,7
3,4,6,7
3,5,6,7 | 688
2447
890
109
376 | 951
3609
1254
152
524 | 1407
5391
1886
223
767 | 1457
5962
2012
238
729 | 421
1540
560
68.8
237 | 598
2271
789
95.7
330 | 886
3392
1187
141
483 | 917
3752
1266
150
459 | 0.34
1.26
0.46
0.056
0.19 | 0.49
1.85
0.64
0.078
0.27 | 0.72
2.77
0.97
0.115
0.39 | 0.75
3.06
1.03
0.122
0.37 | 6.3
7.3
8.4
1.0
1.1 | 8.9
10.7
11.8
1.4
1.6 | 13.2
16.0
17.7
2.1
2.3 | 13.7
17.7
18.9
2.2
2.2 | | Grimes Co. | Series 550 | 260
317 | | 3584
3177 | 4731
4355 | 6849
6316 | 7207
6983 | 2362
2063 | 3118
2827 | 4514
4100 | 4749
4533 | 0.44 | 0.59
0.61 | 0.85
0.88 | 0.89
0.98 | 2.15
2.15 | 2.83
2.95 | 3.68
4.28 | 3.83
4.73 | | Honeywell | Wingtip
AG 113C
Light Assembly | 7792 | | 21.0 | 30.4 | 46.8 | 51.9 | 13.4 | 19.3 | 29.7 | 33.0 | 0.028 | 0.040 | 0.062 | 0.069 | 0.2 | 0.29 | 0.44 | 0.49 | | In-Flight
Devices | IVI Master
Unit | 16JE6-3 | 2 | 1172
1175
1247 | 1597
1621
1713 | 2408
2370
2574 | 2419
2440
2418 | 683
686
851 | 932
945
1170 | 1404
1382
1759 | 1410
1423
1651 | 0.16
0.16
0.18 | 0.22
0.22
0.25 | 0.33
0.32
0.37 | 0.33
0.33
0.35 | 1.45
1.45
1.66 | 1.97
2.00
2.28 | 2.98
2.93
3.42 | 2.99
3.02
3.21 | | Whelan | 2500 | 25-1496-1
25-1496-2 | | 3516
3191 | 4702
4324 | 6429
6211 | 6643
6411 | 2542
2205 | 3400
2988 | 4648
4292 | 4802
4430 | 0.56
0.45 | 0.76
0.60 | 1.03
0.87 | 1.07
0.90 | 2.01
1.61 | 2.7
2.14 | 3.68
3.11 | 3.83
3.22 | | Winn Co. | Omnistrobe | 2-2
2-3
2-4
2-5 | | 1164
943
876. a
859.1 | 1640
1281
1167
1218 | 2330
1780
1587
1644 | 2440
1915
1797
1797 | 779.3
649.6
579.8
591.8 | 1097
882
772.1
838.7 | 1560
1225
1050
1133 | 1633
1318
1189
1238 | 0.191
0.169
0.154
0.149 | 0.269
0.229
0.205
0.211 | 0.382
0.319
0.278
1.284 | 0.400
0.343
0.315
0.311 | 1.8
1.59
1.45
1.40 | 2.54
2.16
1.93
1.99 | 3.61
3.01
2.62
2.68 | 3.77
3.23
2.97
2.93 | Notes 1 Special 160 uF Capacitor 2 Viewed at 90° with respect to preceeding measurement 3 With GE FT-91 Flash Tube 4 Jelec = 5.47 Joules 5 J_{elec} = 17.3 Joules 6 No Reflector 7 Not Designed for Aircraft $C_{\mathbf{I}}$.125 TABLE II. SPECTRAL CHARACTERISTICS OF SOME XENON FLASH TUBES | Serial | | | | Lamp to
Detector
Separation
(cm) | r Lamp
on Steradiancy
(Steradians) | Pulse Peak from
Oscilloscope (mvolts)
V _p | | | | Peak Irradiance at
Detector (mwatts/cm ²)
Ε _{Δλ} | | | | Peak Radiant Intensity (watts/ster) ${}^{ m I}_{\Delta\lambda}$ | | | | | |----------------------|--------------------------------------|---|---|---|--|--|----------------------------------|-----------------------------------|----------------------------------|---|---------------------------------|-----------------------------------|-----------------------------------|---|-----------------------------------|-----------------------------------|----------------------------------|--| | Manufacturer | Model | Number | Notes | đ | $\Omega^{\mathbf{L}}$ | 0.825 | 0.876 | 0.927 | 0.974 | 0.825 | 0.876 | 0.927 | 0.974 | 0.825 | 0.876 | 0.927 | 0.974 | | | Delta | Skystrobe | L-02228
L-02228
L-03264
L-03265 | 1 2 | 126.8
127.0
139.1
138.4 | 9.55
9.55
9.55
9.55 | 1.04
0.94
0.74
0.68 | 0.86
0.85
0.71
0.66 | 0.64
0.59
0.45
0.41 | 0.64
0.55
0.41
0.39 | 2.67
2.41
1.90
1.74 | 2.05
2.03
1.69
1.58 | 1.58
1.46
1.11
1.01 | 2.02
1.74
1.30
1.23 | 106
96.5
91.2
83.0 | 127
126
126
117 | 208
193
176
159 | 230
199
178
167 | | | Electro
Power Pac | 373 | 15761
15761
15762
15762
15762 | 3,4,7
3,5,7
3,4,7
3,4,6,7
3,5,6,7 | 114.9
114.9
121.9
230.0
230.0 | 2.24
2.24
2.24
2.24
2.24 | 3.55
13.0
4.2
1.45
5.0 | 3.5
13.3
4.1
1.4
4.8 | 2.35
9.0
2.8
0.93
3.2 | 2.2
9.0
2.7
0.9
2.75 | 9.1
33
10.8
0.37
1.3 | 8.4
32
9.8
0.33
1.2 | 5.8
22.
6.9
0.23
0.79 | 7.0
28
8.53
0.28
0.87 | 298
1093
397
48.8
168 | 424
1611
500
67.9
234 | 628
2406
842
99.6
342 | 650
2661
898
106
325 | | | Grimes Co. | Series 550 | 260
317 | | 134.6
167.6 | 8.88
8.88 | 3.5
2.0 | 3.2
1.9 | 2.1
1.25 | 2.0
1.25 | 8.97
5.13 | 7.64
4.54 | 5.19
3.09 | 6.32
3.95 | 403
358 | 533
490 | 771
711 | 811
786 | | | Honeywell | Wingtip
AG 113C
Light Assembly | 7792 | | 124.5 | 0.0267 | 8 | 8 | 5.6 | 5.6 | 20.5 | 19.1 | 13.8 | 17.7 | 788 | 1138 | 1752 | 1942 | | | In-Flight
Devices | IVI Master
Unit | 16JE6-3 | 2 | 122.6
122.6
138.4 | 10.24
10.24
10.24 | 1.2
1.2
1.0 | 1.13
1.15
0.95 | 0.774
0.76
0.65 | 0.703
0.71
0.55 | 3.07
3.08
2.56 | 2.70
2.74
2.27 | 1.91
1.88
1.60 | 2.22
2.24
1.74 | 114
115
122 | 156
158
167 | 235
232
251 | 236
238
236 | | | Whelan | 2500 | 25-1496-1
25-1496-2 | | 135.1
135.1 | 11.31
11.31 | 2.7
2.45 | 2.5
2.3 | 1.55
1.5 | 1.45
1.4 | 6.92
6.28 | 5.97
5.49 | 3.83
3.70 | 4.58
4.42 | 314
285 | 419
386 | 573
554 | 592
572 | | | Winn Co. | Omnistrobe | 2-2
2-3
2-4
2-5 | | 91.4
91.4
91.4
91.4 | 10.43
10.43
10.43
10.43 | 2.1
1.7
1.58
1.55 | 2.05
1.6
1.46
1.52 | 1.32
1.01
0.90
0.93 | 1.25
0.98
0.92
0.92 | 5.38
4.36
4.05
3.97 | 4.89
3.82
3.48
3.63 | 3.26
2.49
2.22
2.30 | 3.95
3.10
2.91
2.91 | 111.6
90.46
84.0
82.37 | 157.2
122.8
111.9
116.7 | 223.4
170.7
152.1
157.6 | 233.9
183.6
172.3
172.3 | | Notes 1 Special 160 µF Capacitor 2 Viewed at 90° with respect to preceeding measurement 3 with GE FT-91 Flash Tube 4 Jelec = 5.47 Joules 5 Jelec = 17.3 Joules 6 No Reflector 7 Not Designed for Aircraft ## NATIONAL AERONAUTICS AND SPACE ADMINISTRATION WASHINGTON, D. C. 20546 OFFICIAL BUSINESS PENALTY FOR PRIVATE USE \$300 #### FIRST CLASS MAIL O2U O01 27 51 3DS 71070 00903 AIR FORCE WEAPONS LABORATORY /WLOL/ KIRTLAND AFB, NEW MEXICO 87117 ATT E. LOU BOWMAN, CHIEF, TECH. LIBRARY POSTMASTER: If Under If Undeliverable (Section 15: Postal Manual) Do Not Retu "The aeronautical and space activities of the United States shall be conducted so as to contribute . . . to the expansion of human knowledge of phenomena in the atmosphere and space. The Administration shall provide for the widest practicable and appropriate dissemination of information concerning its activities and the results thereof." —NATIONAL AERONAUTICS AND SPACE ACT OF 1958 ### NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS TECHNICAL REPORTS: Scientific and technical information considered important, complete, and a lasting contribution to existing knowledge. TECHNICAL NOTES: Information less broad in scope but nevertheless of importance as a contribution to existing knowledge. #### TECHNICAL MEMORANDUMS: Information receiving limited distribution because of preliminary data, security classification, or other reasons. CONTRACTOR REPORTS: Scientific and technical information generated under a NASA contract or grant and considered an important contribution to existing knowledge. TECHNICAL TRANSLATIONS: Information published in a foreign language considered to merit NASA distribution in English. SPECIAL PUBLICATIONS: Information derived from or of value to NASA activities. Publications include conference proceedings, monographs, data compilations, handbooks, sourcebooks, and special bibliographies. TECHNOLOGY UTILIZATION PUBLICATIONS: Information on technology used by NASA that may be of particular interest in commercial and other non-aerospace applications. Publications include Tech Briefs, Technology Utilization Reports and Technology Surveys. Details on the availability of these publications may be obtained from: SCIENTIFIC AND TECHNICAL INFORMATION OFFICE NATIONAL AERONAUTICS AND SPACE ADMINISTRATION Washington, D.C. 20546